DNSSEC Mechanisms

- New Resource Records
- Setting Up a Secure Zone
- Delegating Signing Authority
- Key Rollovers
- AD, CD, DO bits

Public Key Crypto (in one slide)

- Key pair: a secret (or private) key and a public key
- Simplified:
 - If you know the public key, you can decrypt data encrypted with the secret key
 - Usually an encrypted hash value over a published piece of information; the owner is the only person who can construct the secret. Hence this a signature
 - If you know the secret key, you can decrypt data encrypted with the public key
 - Usually an encrypted key for symmetric cipher
- PGP uses both, DNSSEC only uses signatures
- Algorithms: RSA, DSA, Elliptic curve, etc...

Public Key Issues

- Public keys need to be distributed.
- Private keys need to be kept private
- Both key distribution and secrecy are not trivial
- Public key cryptography is 'slow'

The DNS is Not a PKI

- All key procedures are based on local policy
- A PKI is as strong as its weakest link
 Certificate Authorities control this through SLAs
- The DNS does not have Certificate Revocation Lists
- If the domain is under one administrative control you might be able to enforce policy

Security Status of Data (RFC4035)

- Secure
 - Resolver is able to build a chain of signed DNSKEY and DS RRs from a trusted security anchor to the RRset
- Insecure
 - Resolver knows that it has no chain of signed DNSKEY and DS RRs from any trusted starting point to the RRset
- Bogus
 - Resolver believes that it ought to be able to establish a chain of trust but for which it is unable to do so
 - May indicate an attack but may also indicate a configuration error or some form of data corruption
- Indeterminate
 - Resolver is not able to determine whether the RRset should be signed

New Resource Records

RRs and RRSets

• Resource Record:

- name TTL class type rdata www.nlnetlabs.nl. 7200 IN A 192.168.10.3

- RRset: RRs with same name, class and type:
 www.nlnetlabs.nl. 7200 IN A 192.168.10.3
 A 10.0.0.3
 A 172.25.215.2
- RRSets are signed, not the individual RRs

New Resource Records

- Three Public key crypto related RRs
 - RRSIG Signature over RRset made using private key
 - DNSKEY Public key, needed for verifying a RRSIG
 - DS Delegation Signer; 'Pointer' for building chains of authentication
- One RR for internal consistency
 - NSEC Indicates which name is the next one in the
 - zone and which typecodes are available for the current name
 - authenticated non-existence of data

DNSKEY RDATA

RRSIG RDATA

Delegation Signer (DS)

- Delegation Signer (DS) RR indicates that:
 - delegated zone is digitally signed
 - indicated key is used for the delegated zone
- Parent is authorative for the DS of the child's zone
 - Not for the NS record delegating the child's zone!
 - DS **should not** be in the child's zone

DS RDATA

NSEC RDATA

- Points to the next domain name in the zone
 - also lists what are all the existing RRs for "name"
 - NSEC record for last name "wraps around" to first name in zone
- N*32 bit type bit map
- Used for authenticated denial-of-existence of data
 authenticated non-existence of TYPEs and labels

• Example:

www.nlnetlabs.nl. 3600 IN NSEC nlnetlabs.nl. A RRSIG NSEC

NSEC Records

- NSEC RR provides proof of non-existence
- If the servers response is Name Error (NXDOMAIN):
 - One or more NSEC RRs indicate that the name or a wildcard expansion does not exist
- If the servers response is NOERROR:
 - And empty answer section
 - The NSEC proves that the QTYPE did not exist
- More than one NSEC may be required in response
 - Wildcards
- NSEC records are generated by tools
 - Tools also order the zone

NSEC Walk

- NSEC records allow for zone enumeration
- Providing privacy was not a requirement at the time
- Zone enumeration seems to be an deployment barrier
- NSEC-3 helps solved the problem

Other Keys in the DNS

- DNSKEY RR can only be used for DNSSEC
 - Keys for other applications need to use other RR types
- CERT
 - For X.509 certificates
- Application keys under discussion/development
 - IPSECKEY
 - SSHFP

Delegating Signing Authority

Chains of Trust

Locally Secured Zones

• Key distribution does not scale!

Using the DNS to Distribute Keys

- Secured islands make key distribution problematic
- Distributing keys through DNS:
 - Use one trusted key to establish authenticity of other keys
 - Building chains of trust from the root down
 - Parents need to sign the keys of their children
- Only the root key needed in ideal world
 - Parents always delegate security to child

Key Problem

- Interaction with parent administratively expensive
 - Should only be done when needed
 - Bigger keys are better
- Signing zones should be fast
 - Memory restrictions
 - Space and time concerns
 - Smaller keys with short lifetimes are better

Key solution: KSK and ZSK

- RRsets are signed, not RRs
- DS points to specific key
 - Signature from that key over DNSKEY RRset transfers trust to all keys in DNSKEY RRset
- Key that DS points to only signs DNSKEY RRset
 Key Signing Key (KSK)
- Other keys in DNSKEY RRset sign entire zone
 - Zone Signing Key (ZSK)

Initial Key Exchange

- Child needs to:
 - Send key signing keyset to parent
- Parent needs to:
 - Check childs zone
 - for DNSKEY & RRSIGs
 - Verify if key can be trusted
 - Generate DS RR

Chain of Trust Verification, Summary

page 24

- Data in zone can be trusted if signed by a Zone-Signing-Key
- Zone-Signing-Keys can be trusted if signed by a Key-Signing-Key
- Key-Signing-Key can be trusted if pointed to by trusted DS record
- DS record can be trusted

- if signed by the parents Zone-Signing-Key

or

- DS or DNSKEY records can be trusted if exchanged outof-band and locally stored (Secure entry point)

Key Rollovers

Private Keys

- You have to keep your private key secret
- Private key can be stolen
 - Put the key on stand alone machines or on bastion hosts behind firewalls and strong access control
- Private key reconstruction (crypto analysis)
 - Random number not random
 - Leakage of key material (DSA)
 - Brute force attacks

Key Rollovers

- Try to minimise impact
 - Short validity of signatures
 - Regular key rollover
- Remember: DNSKEYs do not have timestamps
 the RRSIG over the DNSKEY has the timestamp
- Key rollover involves second party or parties:
 - State to be maintained during rollover
 - Operationally expensive

Timing of the Scheduled^{**} Key Rollover

- Don't remove the old key while there are servers still handing out the old DS RR
- New DS needs to be distributed to the slaves
 Max time set by the SOA expiration time
- Old DS needs to have expired from caches
 Set by the TTL of the original DS RR
- You (or your tool) can check if the master and slave have picked up the change

Unscheduled Rollover Problems

- Needs out of band communication
 - With parent and pre-configured resolvers
- The parent needs to establish your identity again
- How to protect child delegations?
 - Unsecured?
- There will be a period that the" stolen" key can be used to generate seemingly secure data
- Emergency procedure must be on the shelf

Key Rollover -Summary

- Generate new KSK
- Sign with old and new KSKs
- Wait for your servers + TTL of old DNSKEY RRset
- Inform resolvers of the new key
 - that have you as a trusted entry point
- Query for the parental DS and remember the TTL
- Upload the new KSK or DS to the parent
- Check if *all* parental servers have new DS
- Wait another TTL before removing the old key

D0 bit

- A state bit in the « header » section of DNS packets
 - Not used before DNSSEC (should be set to zero)
 - I = "resolver" want DNSSEC RRs
 - 0= "resolver" does not want DNSSEC RRs

AD bit

- A state bit in the « header » section of DNS packets
 - Not used before DNSSEC(should be set to zero)
 - Only used in response from validators
- AD bit is not set by authoritative server, unless it has been configured to do so.
- AD = Authenticated data

Bit CD

- A state bit in the « header » section of DNS packets
 Not used before DNSSEC(should be set to zero)
- CD = Checking Disable
 - I = validation disable
 - "resolver" accepts non verified data
 - 0= validation enabled
 - "resolver" want validated answers for signed data, but accepts answers for non signed data

"new" Developments

- NSEC3
 - RFC 5155
 - All RR names hashed
 - Hashed names are ordered
 - "opt-out" for unsecured delegations possibilities
- Automated Trust anchors rollover – RFC5011
- SHAI to be deprecated
 - New hash for DS records
 - Overlap, no flag day

Some issues with DNSSEC

- Does not protect against denial of service attacks, but increases the risks
 - Cryptographic load
 - Larger DNSSEC messages
 - RFC5358
- Does not protect non signed RRs (non authoritative data at delegation point)
 - NS and glue in parent zone
 - Zone transfer should be protected by other means
- Add complexity to DNS, increasing the risks of bad configuration

– Nothing is for free :-)

- How to distribute and roll trust anchor(s) ?
 - RFC5011?

Some issues DNSSEC(cont.d)

• NSEC offers zone-walk

– NSEC3

 Certain firewalls/middle boxes do not support DNS message > 512 byte(edns0)

Many are reconfigurable

- Certain Firewalls/middle boxes have issues with AD, CD, DO bits in the DNS packet header
- Certain old stub resolvers may have issues with the AD bit
 - Add the AD bit in request for signaling resolvers state ?

