Introduction to Networking Monitoring and Management
Part I: Overview

Core concepts presented:

- What is network monitoring
- What is network management
- Getting started
- Why network management
- Attack detection
- Consolidating the data
- The big picture
What is network monitoring?

Anyone have some ideas?

Monitoring an active communications network in order to diagnose problems and gather statistics for administration and fine tuning.

The term **network monitoring** describes the use of a system that constantly monitors a computer network for slow or failing components and that notifies the network administrator in case of outages via email, pager or other alarms. It is a subset of the functions involved in network management.
What is network management?

Refers to the broad subject of managing computer networks. There exists a wide variety of software and hardware products that help network system administrators manage a network. Network management covers a wide area, including:

- **Security**: Ensuring that the network is protected from unauthorized users.
- **Performance**: Eliminating bottlenecks in the network.
- **Reliability**: Making sure the network is available to users and responding to hardware and software malfunctions.
What is network management?

- System & Service monitoring
 - Reachability, availability
- Resource measurement/monitoring
 - Capacity planning, availability
- Performance monitoring (RTT, throughput)
- Statistics & Accounting/Metering
- Fault Management (Intrusion Detection)
 - Fault detection, troubleshooting, and tracking
 - Ticketing systems, help desk
- Change management and configuration monitoring
Getting started

Make sure that the network is up and running. Thus, we need to monitor it:

- Deliver projected SLAs (Service Level Agreements)
- Depends on policy
 - What does your management expect?
 - What do your users expect?
 - What do your customers expect?
 - What does the rest of the Internet expect?
- Is 24x7 good enough?
 - There's no such thing as 100% uptime (as we’ll see)
Getting started: “Uptime”

What does it take to deliver 99.9 % uptime?

30.5 x 24 = 762 hours a month

(762 – (762 x .999)) x 60 = 45 minutes
only 45 minutes of downtime a month!

Need to shutdown 1 hour / week?

(762 - 4) / 762 x 100 = 99.4 %

Remember to take planned maintenance into account in your calculations, and inform your users/customers if they are included/excluded in the SLA

How is availability measured?

In the core? End-to-end? From the Internet?
Getting started: Baselining

What is normal for your network?
If you’ve never measured or monitored your network you need to know things like:

– Load on links
– Jitter between endpoints
– Percent usage of resources
– Amount of “noise”:
 • Network scans
 • Dropped data
 • Reported errors or failures
Why network management?

Know when to upgrade
- Is your bandwidth usage too high?
- Where is your traffic going?
- Do you need to get a faster line, or more providers?
- Is the equipment too old?

Keep an audit trace of changes
- Record all changes
- Makes it easier to find cause of problems due to upgrades and configuration changes

Keep a history of your network operations
- Using a ticket system let you keep a history of events.
- Allows you to defend yourself and verify what happened
Why network management?

Accounting
- Track usage of resources
- Bill customers according to usage

Know when you have problems
- Stay ahead of your users! Makes you look good.
- Monitoring software can generate tickets and automatically notify staff of issues.

Trends
- All of this information can be used to view trends across your network.
- This is part of baselining, capacity planning and attack detection.
Trends and automation allow you to know when you are under attack.

The tools in use can help you to mitigate attacks:
 – Flows across network interfaces
 – Load on specific servers and/or services
 – Multiple service failures
Consolidating the data

The Network Operations Center (NOC) “Where it all happens”
- Coordination of tasks
- Status of network and services
- Fielding of network-related incidents and complaints
- Where the tools reside (”NOC server”)
- Documentation including:
 - Network diagrams
 - database/flat file of each port on each switch
 - Network description
 - Much more as you'll see a bit later.
The big picture

- Monitoring
- Data collection
- Accounting

- Change control & monitoring

- Improvements
- Upgrades

- NOC Tools
- Ticket system

- Fix problems

- Capacity planning
- Availability (SLAs)
- Trends
- Detect problems

- User complaints
- Requests

Ticket
Notifications
A few Open Source solutions...

<table>
<thead>
<tr>
<th>Performance</th>
<th>Change Mgmt</th>
<th>Net Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cricket</td>
<td>Mercurial</td>
<td>Big Brother</td>
</tr>
<tr>
<td>IFPFM</td>
<td>Rancid (routers)</td>
<td>Big Sister</td>
</tr>
<tr>
<td>flowc</td>
<td>RCS</td>
<td>Cacti</td>
</tr>
<tr>
<td>mrtg</td>
<td>Subversion</td>
<td>Hyperic</td>
</tr>
<tr>
<td>netflow</td>
<td>NfSen</td>
<td>Munin</td>
</tr>
<tr>
<td>NfSen</td>
<td>ntop</td>
<td>Nagios*</td>
</tr>
<tr>
<td>ntop</td>
<td>pmacct</td>
<td>Netdisco</td>
</tr>
<tr>
<td>rrdtool</td>
<td>Rabbit</td>
<td>Netdot</td>
</tr>
<tr>
<td>SmokePing</td>
<td>Nessus</td>
<td>OpenNMS</td>
</tr>
<tr>
<td>SNMP/Perl/ping</td>
<td>OSSEC</td>
<td>Sysmon</td>
</tr>
<tr>
<td>Ticketing</td>
<td>Prelude</td>
<td>Zabbix</td>
</tr>
<tr>
<td>RT, Trac, Redmine</td>
<td>Samhain</td>
<td></td>
</tr>
</tbody>
</table>
Questions?
Part II: Details

Some details on the core concepts:

- Network documentation
- Diagnostic tools
- Monitoring tools
- Performance tools
- Active and passive tools
- SNMP
- Ticket systems
- Configuration and change management
Maybe you’ve asked, “How do you keep track of it all?”...

Document, document, document…
Basics, such as documenting your switches...

- What is each port connected to?
- Can be simple text file with one line for every port in a switch:
 - health-switch1, port 1, Room 29 – Director’s office
 - health-switch1, port 2, Room 43 – Receptionist
 - health-switch1, port 3, Room 100 – Classroom
 - health-switch1, port 4, Room 105 – Professors Office
 -
 - health-switch1, port 25, uplink to health-backbone

- This information might be available to your network staff, help desk staff, via a wiki, software interface, etc.
- Remember to label your ports!
Nice... 😊
Network Documentation

More automation might be needed. An automated network documentation system is something to consider.

– You can write local scripts to do this.
– You can consider some automated documentation systems.
– You’ll probably end up doing both.
Automated Systems

There are quite a few automated network documentation systems. Each tends to do something different:

- IPplan:
 http://iptrack.sourceforge.net/

- Netdisco:
 http://netdisco.org/

- Netdot:
 https://netdot.uoregon.edu/
From the IPplan web page:

“IPplan is a free (GPL), web based, multilingual, TCP IP address management (IPAM) software and tracking tool written in php 4, simplifying the administration of your IP address space. IPplan goes beyond TCPIP address management including DNS administration, configuration file management, circuit management (customizable via templates) and storing of hardware information (customizable via templates).”

Lots of screenshots:

http://iptrack.sourceforge.net/doku.php?id=screenshots
Netdisco:

- Some popular uses of Netdisco:
 - **Locate** a machine on the network by MAC or IP and show the switch port it lives at.
 - **Turn Off** a switch port while leaving an audit trail. Admins log why a port was shut down.
 - **Inventory** your network hardware by model, vendor, switch-card, firmware and operating system.
 - **Report** on IP address and switch port usage: historical and current.
 - **Pretty pictures** of your network.
Netdot: {net.} NETwork DOcumentation Tool

Includes functionality of IPplan and Netdisco and more. Core functionality includes:

- Device discovery via SNMP
- Layer2 topology discovery and graphs, using:
 - CDP/LLDP
 - Spanning Tree Protocol
 - Switch forwarding tables
 - Router point-to-point subnets
- IPv4 and IPv6 address space management (IPAM)
 - Address space visualization
 - DNS/DHCP config management
 - IP and MAC address tracking

Continued ➔
Netdot: Network Documentation Tool

Functionality continued:

- Cable plant (sites, fiber, copper, closets, circuits...)
- Contacts (departments, providers, vendors, etc.)
- Export scripts for various tools (Nagios, Sysmon, RANCID, Cacti, etc)
 - I.E., how we could automate node creation in Cacti!
- Multi-level user access: Admin, Operator, User
- It draws pretty pictures of your network
Documentation: Diagrams

Classroom layout at APRICOT 2008
Diagramming Software

Windows Diagramming Software
- Visio:
- Ezdraw:
 http://www.edrawsoft.com/

Open Source Diagramming Software
- Dia:
 http://live.gnome.org/Dia
- Cisco reference icons:
 http://www.cisco.com/web/about/ac50/ac47/2.html
- Nagios Exchange:
 http://www.nagiosexchange.org/
Network monitoring systems & tools

Three kinds of tools

1. **Diagnostic tools** – used to test connectivity, ascertain that a location is reachable, or a device is up – usually active tools.

2. **Monitoring tools** – tools running in the background ("daemons" or services), which collect events, but can also initiate their own probes (using diagnostic tools), and recording the output, in a scheduled fashion.

 - **Performance tools** – tell us how our network is...
3. Performance Tools

Key is to look at each router interface (probably don’t need to look at switch ports).

Two common tools:

- MRTG: http://oss.oetiker.ch/mrtg/

MRTG = “Multi Router Traffic Grapher”
Network monitoring systems & tools

Active tools
- Ping – test connectivity to a host
- Traceroute – show path to a host
- MTR – combination of ping + traceroute
- SNMP collectors (polling)

Passive tools
- log monitoring, SNMP trap receivers, NetFlow

Automated tools
- SmokePing – record and graph latency to a set of hosts, using ICMP (Ping) or other protocols
- MRTG/RRD – record and graph bandwidth usage on a switch port or network link, at regular intervals
Network monitoring systems & tools

Network & Service Monitoring tools

- Nagios – server and service monitor
 - Can monitor pretty much anything
 - HTTP, SMTP, DNS, Disk space, CPU usage, ...
 - Easy to write new plugins (extensions)

- Basic scripting skills are required to develop simple monitoring jobs – Perl, Shell scripts, php, etc...

- Many good Open Source tools
 - Zabbix, ZenOSS, Hyperic, OpenNMS ...

Use them to monitor reachability and latency in your network

- Parent-child dependency mechanisms are very useful!
Network monitoring systems & tools

Monitor your critical Network Services
- DNS/Web/Email
- Radius/LDAP/SQL
- SSH to routers

How will you be notified?

Don't forget log collection!
- Every network device (and UNIX and Windows servers as well) can report system events using syslog
- You **MUST** collect and monitor your logs!
- Not doing so is one of the most common mistakes when doing network monitoring
Network management protocols

SNMP – Simple Network Management Protocol
- Industry standard, hundreds of tools exist to exploit it
- Present on any decent network equipment
 ➔ Network throughput, errors, CPU load, temperature, ...
- UNIX and Windows implement this as well
 ➔ Disk space, running processes, ...

SSH and telnet
- It is also possible to use scripting to automate monitoring of hosts and services
SNMP tools

Net SNMP tool set
 - http://net-snmp.sourceforge.net/

Very simple to build simple tools
 - One that builds snapshots of which IP is used by which Ethernet address
 - Another that builds snapshots of which Ethernet addresses exist on which port on which switch.
 - Query remote RAID array for state.
 - Query server, switches and routers for temperatures.
 - Etc…
Traffic accounting and analysis

- What is your network used for, and how much
- Useful for Quality of Service, detecting abuses, and billing (metering)
- Dedicated protocol: NetFlow
- Identify traffic ”flows”: protocol, source, destination, bytes
- Different tools exist to process the information
 - Flowtools, flowc
 - NFSen
 - Many more: http://www.networkuptime.com/tools/netflow/
Is the problem transient?
- Overload, temporary resource shortage

Is the problem permanent?
- Equipment failure, link down

How do you detect an error?
- Monitoring!
- Customer complaints

A ticket system is essential
- Open ticket to track an event (planned or failure)
- Define dispatch/escalation rules
 ➔ Who handles the problem?
 ➔ Who gets it next if no one is available?
Ticketing systems

Why are they important?
- Track all events, failures and issues

Focal point for helpdesk communication

Use it to track all communications
- Both internal and external

Events originating from the outside:
- Customer complaints

Events originating from the inside:
- System outages (direct or indirect)
- Planned maintenances or upgrades – Remember to notify your customers!
Ticketing systems

- Use ticket system to follow each case, including internal communication between technicians
- Each case is assigned a case number
- Each case goes through a similar life cycle:
 - New
 - Open
 - ...
 - Resolved
 - Closed
Ticketing systems

Workflow:

<table>
<thead>
<tr>
<th>Ticket System</th>
<th>Helpdesk</th>
<th>Tech</th>
<th>Eqpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

query from customer -- request -- ack. --

--- comm --- fix issue -> eqpt

--- respond --- report fix ---

--- respond ---
Ticketing systems: examples

rt (request tracker)
- Heavily used worldwide.
- A classic ticketing system that can be customized to your location.
- Somewhat difficult to install and configure.
- Handles large-scale operations.

trac
- A hybrid system that includes a wiki and project management features.
- Ticketing system is not as robust as rt, but works well.
- Often used for “trac”king group projects.

redmine
- Like trac, but more robust. Harder to install
These are systems that observe all of your network traffic and report when it sees specific kinds of problems, such as:
 - hosts that are infected or are acting as spamming sources.

A few tools:
 - SNORT - a commonly used open source tool: http://www.snort.org/
 - Prelude – Security Information Management System https://dev.prelude-technologies.com/
 - Samhain – Centralized HIDS http://la-samhna.de/samhain/
 - Nessus - scan for vulnerabilities: http://www nessus.org/download/
Configuration mgmt & monitoring

- Record changes to equipment configuration using *revision control* (also for configuration files)
- Inventory management (equipment, IPs, interfaces)
- Use versioning control
 - As simple as:
 "`cp named.conf named.conf.20070827-01`"
- For plain configuration files:
 - CVS, Subversion (SVN)
 - Mercurial
- For routers:
 - RANCID
Traditionally, used for source code (programs)

Works well for any text-based configuration files
- Also for binary files, but less easy to see differences

For network equipment:
- **RANCID** (Automatic Cisco configuration retrieval and archiving, also for other equipment types)

Built-in to Project Management Software like:
- **Trac**
- **Redmine**
- And, many other wiki products. Excellent for documenting your network.
The big picture revisited

- Monitoring
- Data collection
- Accounting

- Change control & monitoring

- Improvements
- Upgrades

- Fix problems

- NOC Tools
 - Ticket system

- Capacity planning
- Availability (SLAs)
- Trends
- Detect problems

- User complaints
- Requests

Notifications

Ticket
Questions