
Hands On UNIX

AfNOGChix 2011
Blantyre, Malawi

Processes

 A running instance of a program is called a "process"

 Identified by a numeric process id (pid)‏

� unique while process is running; will be re-used some time
after it terminates

 Has its own private memory space

� not accessible by other processes; not even other instances of
the same program

What does UNIX give a process?

 A table of environment variables

� just a bunch of name=value settings
� kept in memory (process gets own private copy)‏

 A table of open files

� 0: standard input
� 1: standard output
� 2: standard error

 A set of argument strings

� e.g. what you put after the command name
 THAT'S ALL!!

The shell: a simple interface

 The shell lets you start processes

� and waits for them to finish, unless you run them in the
"background"

 The shell lets you set environment variables

 The shell lets you set up file descriptors

� Normally stdin is connected to your keyboard and
stdout/stderr to your screen, but you can override

 The shell lets you pass arguments

Shell expansion

 The shell performs processing on your command line
before starting the program

 Splits line into words (cmd, arg1, arg2,...)‏

 Searches for cmd in PATH if required

 Performs various types of argument expansion

� See exercise

The shell itself runs as a process

 A shell can start another shell

 A shell has its own environment

� e.g. it uses the PATH setting to locate programs
� it copies the environment to its children

 A shell has stdin/stdout/stderr

� You can run a non-interactive shell, i.e. a script
� Examples include periodic system tidying

 log rotation
 rebuilding of the locate database
 rebuilding of the man page index

How are new processes started ?

 The current processes “clones” itself via the fork() call

 The fork'ed copy is called the child

� it shares all the characteristics of the parent, including memory,
open files, etc...

 The child replaces itself by calling the new program to run
via exec()
 |
 fork()
 / \
 parent child
 |
 exec()‏

Once a process has started...
 It can make "system calls" to the Kernel as needed, e.g. to

� read and write data
� open and close files
� start new child processes (known as "fork") ...etc

 Using its pid, you can send it a "signal", e.g.

� Request to terminate
� Request to suspend (stop temporarily) or restart
� Certain system events also send signals

 When it ends, returns 'exit code' (0-127)‏

� to parent (the process which started it)‏

 For a "foreground" process

� Ctrl-C = terminate
� Ctrl-Z = suspend **

 Show all processes

� ps auxw
 Send a signal to any process

� kill [-sig] pid
 More advanced job control

� jobs = list all jobs (children) started by this shell
� fg %n = resume in foreground **
� bg %n = resume in background

Process control from the shell

Summary

 Processes identified by pid

 Each process at start gets 3 things:

� Environment variables, e.g. HOME="/home/you"
� Open files
� Arguments

 You can send signals to a running process

 At end it returns a numeric exit code

 Shell gives you control of these things

Processes and security

 Each process runs with set privileges

� effective uid
� effective gid
� supplementary groups

 Some operations are only available to root

� e.g. bind socket to port below 1024
� e.g. shut down system

 A process running as root (euid=0) can change to any other uid
- but not back again

 Other processes cannot change uid at all!

How do users change passwords?

 Note that /etc/master.passwd is only readable and
writable by root

 The 'passwd' program has special privileges, it is marked "setuid
root"

 Whenever a user starts the 'passwd' program, kernel gives it
euid=root

� It can then change the user's password
 setuid programs must be written very carefully to avoid security

holes

 Don't fiddle with setuid bits

Aside...

 It's really useful to think of commands in pairs

� The command which shows a setting and the command
which changes that setting

 Example:

� pwd shows the current working directory
� cd changes the current working directory

 Follow the 3-step system for changes

� Check things are how you think they are
� Make the change
� Check things have changed as you expected

The Virtual Filesystem (VFS)‏

 All filesystems appear in a single tree

 Must have a root device - /

 Can attach other devices at other points

 At bootup, everything in /etc/fstab is mounted

� except lines marked 'noauto'

Key VFS commands

 Show status

� mount
� df

 Attach device

� mount -t cd9660 /dev/acd0 /cdrom
 /cdrom is called the "mount point"
 it's just an empty subdirectory
 after mounting, the filesystem contents appear here

 Detach device

� umount /cdrom

Other devices
 Formatting a floppy disk

� fdformat /dev/fd0
� newfs_msdos -L myfloppy /dev/fd0

 Mounting a floppy disk

� mount -t msdos /dev/fd0 /mnt
 USB pen

� mount -t msdos /dev/da0s1 /mnt
 typical example
 look in /var/log/messages to check device
 use 'fdisk /dev/da0' to look at slices

Filesystem safety

 DON'T remove any media until it has been unmounted

� Otherwise, filesystem can be corrupted
 Kernel won't let you unmount a filesystem if it is in use

� Use 'fstat' to find processes using it
 ALWAYS shut down properly

 Filesystem repair tool is called "fsck"

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

